criterion performance measurements

overview

want to understand this report?

sort . nub/100(1->536870911)

54
55
56
57
54.5
55.5
56.5
sort . nub/100(1->536870911) time densities
mean
500
750
1000
1250
1500
250 iters
40
60
80
100
0 s
20 ms
regression
sort . nub/100(1->536870911) times
lower bound estimate upper bound
OLS regression 54.4 μs 54.6 μs 54.8 μs
R² goodness-of-fit 0.999 1.000 1.000
Mean execution time 54.5 μs 54.7 μs 54.9 μs
Standard deviation 377 ns 640 ns 935 ns

Outlying measurements have no (0.9%) effect on estimated standard deviation.

sort . nub/200(1->536870911)

197
198
199
200
201
202
sort . nub/200(1->536870911) time densities
mean
100
150
200
250
300
350
400
450
50 iters
40
60
80
100
0 s
20 ms
regression
sort . nub/200(1->536870911) times
lower bound estimate upper bound
OLS regression 199 μs 199 μs 200 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 199 μs 199 μs 199 μs
Standard deviation 912 ns 1.10 μs 1.45 μs

Outlying measurements have slight (1.2%) effect on estimated standard deviation.

sort . nub/400(1->536870911)

738
740
743
745
748
750
sort . nub/400(1->536870911) time densities
mean
40
60
80
100
120
20 iters
40
60
80
100
120
0 s
20 ms
regression
sort . nub/400(1->536870911) times
lower bound estimate upper bound
OLS regression 740 μs 742 μs 745 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 741 μs 743 μs 744 μs
Standard deviation 2.50 μs 3.32 μs 4.34 μs

Outlying measurements have slight (1.7%) effect on estimated standard deviation.

sort . nub/600(1->536870911)

1.64
1.65
1.65
1.66
1.66
1.67
1.67
1.68
sort . nub/600(1->536870911) time densities
mean
20
30
40
50
60
10 iters
40
60
80
100
120
0 s
20 ms
regression
sort . nub/600(1->536870911) times
lower bound estimate upper bound
OLS regression 1.65 ms 1.66 ms 1.66 ms
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 1.65 ms 1.65 ms 1.66 ms
Standard deviation 6.56 μs 8.31 μs 12.2 μs

Outlying measurements have slight (2.2%) effect on estimated standard deviation.

sort . nub/800(1->536870911)

2.83
2.84
2.85
2.86
2.87
2.88
2.89
2.9
2.91
sort . nub/800(1->536870911) time densities
mean
10
15
20
25
30
35
40
5 iters
50
75
100
125
0 s
25 ms
regression
sort . nub/800(1->536870911) times
lower bound estimate upper bound
OLS regression 2.84 ms 2.85 ms 2.87 ms
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 2.85 ms 2.86 ms 2.86 ms
Standard deviation 11.8 μs 17.7 μs 25.8 μs

Outlying measurements have slight (2.8%) effect on estimated standard deviation.

sort . nub/1000(1->536870911)

4.35
4.40
4.45
4.5
sort . nub/1000(1->536870911) time densities
mean
10
15
20
25
30
5 iters
50
75
100
125
150
0 s
25 ms
regression
sort . nub/1000(1->536870911) times
lower bound estimate upper bound
OLS regression 4.40 ms 4.43 ms 4.48 ms
R² goodness-of-fit 0.999 1.000 1.000
Mean execution time 4.38 ms 4.40 ms 4.42 ms
Standard deviation 35.2 μs 48.5 μs 60.0 μs

Outlying measurements have slight (3.3%) effect on estimated standard deviation.

sort . nub/1250(1->536870911)

6.60
6.65
6.70
6.75
6.80
6.85
sort . nub/1250(1->536870911) time densities
mean
10
15
20
5 iters
100
150
200
0 s
50 ms
regression
sort . nub/1250(1->536870911) times
lower bound estimate upper bound
OLS regression 6.66 ms 6.69 ms 6.71 ms
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 6.69 ms 6.70 ms 6.73 ms
Standard deviation 37.9 μs 52.4 μs 75.7 μs

Outlying measurements have slight (4.2%) effect on estimated standard deviation.

sort . nub/1500(1->536870911)

9.70
9.73
9.75
9.78
9.8
9.83
sort . nub/1500(1->536870911) time densities
mean
5
8
10
13
15
18
2.5 iters
100
150
200
0 s
50 ms
regression
sort . nub/1500(1->536870911) times
lower bound estimate upper bound
OLS regression 9.70 ms 9.74 ms 9.78 ms
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 9.75 ms 9.76 ms 9.78 ms
Standard deviation 29.7 μs 35.7 μs 46.5 μs

Outlying measurements have slight (5.0%) effect on estimated standard deviation.

sort . nub/2000(1->536870911)

17.1
17.2
17.3
17.4
17.5
17.6
17.7
sort . nub/2000(1->536870911) time densities
mean
4
6
8
10
12
14
2 iters
100
150
200
250
0 s
50 ms
regression
sort . nub/2000(1->536870911) times
lower bound estimate upper bound
OLS regression 17.1 ms 17.3 ms 17.4 ms
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 17.3 ms 17.3 ms 17.4 ms
Standard deviation 82.4 μs 144 μs 218 μs

Outlying measurements have slight (6.6%) effect on estimated standard deviation.

sort . nub/3000(1->536870911)

39.0
39.2
39.4
39.6
39.8
40.0
40.2
sort . nub/3000(1->536870911) time densities
mean
2
3
4
5
6
7
8
9
1 iters
100
150
200
250
300
350
400
0 s
50 ms
regression
sort . nub/3000(1->536870911) times
lower bound estimate upper bound
OLS regression 39.1 ms 39.4 ms 39.7 ms
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 39.3 ms 39.5 ms 39.8 ms
Standard deviation 197 μs 319 μs 491 μs

Outlying measurements have slight (9.9%) effect on estimated standard deviation.

sort . nub/4000(1->536870911)

69
70
71
68.5
69.5
70.5
71.5
sort . nub/4000(1->536870911) time densities
mean
2
3
4
5
6
7
1 iters
200
300
400
500
600
0 s
100 ms
regression
sort . nub/4000(1->536870911) times
lower bound estimate upper bound
OLS regression 70.4 ms 71.0 ms 73.2 ms
R² goodness-of-fit 0.998 0.999 1.000
Mean execution time 69.2 ms 70.1 ms 70.8 ms
Standard deviation 813 μs 1.09 ms 1.35 ms

Outlying measurements have moderate (12.2%) effect on estimated standard deviation.

sort . nub/5000(1->536870911)

108
108
109
109
110
110
111
sort . nub/5000(1->536870911) time densities
mean
2
3
4
5
1 iters
200
300
400
500
600
0 s
100 ms
regression
sort . nub/5000(1->536870911) times
lower bound estimate upper bound
OLS regression 103 ms 107 ms 111 ms
R² goodness-of-fit 0.998 1.000 1.000
Mean execution time 108 ms 109 ms 110 ms
Standard deviation 1.09 ms 1.27 ms 1.50 ms

Outlying measurements have moderate (16.0%) effect on estimated standard deviation.

nub . sort/100(1->536870911)

57
58
59
60
57.5
58.5
59.5
60.5
nub . sort/100(1->536870911) time densities
mean
500
750
1000
1250
1500
250 iters
40
60
80
100
0 s
20 ms
regression
nub . sort/100(1->536870911) times
lower bound estimate upper bound
OLS regression 57.8 μs 58.0 μs 58.2 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 57.8 μs 58.0 μs 58.3 μs
Standard deviation 361 ns 631 ns 900 ns

Outlying measurements have no (0.9%) effect on estimated standard deviation.

nub . sort/200(1->536870911)

204
206
208
210
212
nub . sort/200(1->536870911) time densities
mean
100
150
200
250
300
350
400
450
50 iters
40
60
80
100
0 s
20 ms
regression
nub . sort/200(1->536870911) times
lower bound estimate upper bound
OLS regression 207 μs 208 μs 210 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 207 μs 207 μs 209 μs
Standard deviation 1.78 μs 2.33 μs 2.87 μs

Outlying measurements have slight (1.2%) effect on estimated standard deviation.

nub . sort/400(1->536870911)

795
800
805
810
815
nub . sort/400(1->536870911) time densities
mean
40
60
80
100
120
20 iters
40
60
80
100
120
0 s
20 ms
regression
nub . sort/400(1->536870911) times
lower bound estimate upper bound
OLS regression 796 μs 799 μs 803 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 798 μs 800 μs 804 μs
Standard deviation 4.92 μs 6.94 μs 8.80 μs

Outlying measurements have slight (1.7%) effect on estimated standard deviation.

nub . sort/600(1->536870911)

1.77
1.78
1.78
1.79
1.79
1.8
1.80
1.81
1.81
nub . sort/600(1->536870911) time densities
mean
20
30
40
50
60
10 iters
50
75
100
125
0 s
25 ms
regression
nub . sort/600(1->536870911) times
lower bound estimate upper bound
OLS regression 1.78 ms 1.79 ms 1.80 ms
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 1.79 ms 1.79 ms 1.79 ms
Standard deviation 5.67 μs 8.60 μs 12.2 μs

Outlying measurements have slight (2.3%) effect on estimated standard deviation.

nub . sort/800(1->536870911)

3.1
3.12
3.14
3.16
3.18
3.2
nub . sort/800(1->536870911) time densities
mean
10
15
20
25
30
35
40
5 iters
50
75
100
125
150
0 s
25 ms
regression
nub . sort/800(1->536870911) times
lower bound estimate upper bound
OLS regression 3.09 ms 3.10 ms 3.11 ms
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 3.11 ms 3.11 ms 3.12 ms
Standard deviation 11.7 μs 20.8 μs 33.3 μs

Outlying measurements have slight (2.9%) effect on estimated standard deviation.

nub . sort/1000(1->536870911)

4.8
4.85
4.9
4.95
nub . sort/1000(1->536870911) time densities
mean
10
15
20
25
30
5 iters
50
75
100
125
150
0 s
25 ms
regression
nub . sort/1000(1->536870911) times
lower bound estimate upper bound
OLS regression 4.78 ms 4.82 ms 4.86 ms
R² goodness-of-fit 0.999 1.000 1.000
Mean execution time 4.81 ms 4.83 ms 4.85 ms
Standard deviation 37.1 μs 47.1 μs 64.7 μs

Outlying measurements have slight (3.4%) effect on estimated standard deviation.

nub . sort/1250(1->536870911)

7.25
7.3
7.35
7.4
7.45
7.5
7.55
7.60
7.65
nub . sort/1250(1->536870911) time densities
mean
10
15
20
5 iters
100
150
200
0 s
50 ms
regression
nub . sort/1250(1->536870911) times
lower bound estimate upper bound
OLS regression 7.18 ms 7.22 ms 7.26 ms
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 7.35 ms 7.39 ms 7.43 ms
Standard deviation 83.9 μs 102 μs 145 μs

Outlying measurements have slight (4.3%) effect on estimated standard deviation.

nub . sort/1500(1->536870911)

10.4
10.5
10.5
10.6
10.6
nub . sort/1500(1->536870911) time densities
mean
5
8
10
13
15
18
2.5 iters
100
150
200
250
0 s
50 ms
regression
nub . sort/1500(1->536870911) times
lower bound estimate upper bound
OLS regression 10.4 ms 10.5 ms 10.6 ms
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 10.5 ms 10.5 ms 10.5 ms
Standard deviation 65.1 μs 74.2 μs 96.8 μs

Outlying measurements have slight (5.0%) effect on estimated standard deviation.

nub . sort/2000(1->536870911)

18.0
18.1
18.2
18.3
18.4
18.5
nub . sort/2000(1->536870911) time densities
mean
4
6
8
10
12
14
2 iters
100
150
200
250
300
0 s
50 ms
regression
nub . sort/2000(1->536870911) times
lower bound estimate upper bound
OLS regression 18.1 ms 18.2 ms 18.4 ms
R² goodness-of-fit 0.999 1.000 1.000
Mean execution time 18.1 ms 18.2 ms 18.3 ms
Standard deviation 81.5 μs 163 μs 209 μs

Outlying measurements have slight (6.6%) effect on estimated standard deviation.

nub . sort/3000(1->536870911)

40
39.2
39.4
39.6
39.8
40.2
40.4
40.6
nub . sort/3000(1->536870911) time densities
mean
2
3
4
5
6
7
8
9
1 iters
100
150
200
250
300
350
400
0 s
50 ms
regression
nub . sort/3000(1->536870911) times
lower bound estimate upper bound
OLS regression 38.9 ms 39.5 ms 40.0 ms
R² goodness-of-fit 0.999 1.000 1.000
Mean execution time 39.5 ms 39.7 ms 40.0 ms
Standard deviation 231 μs 379 μs 516 μs

Outlying measurements have slight (9.9%) effect on estimated standard deviation.

nub . sort/4000(1->536870911)

69
70
68.5
68.8
69.3
69.5
69.8
70.3
nub . sort/4000(1->536870911) time densities
mean
2
3
4
5
6
7
1 iters
200
300
400
500
600
0 s
100 ms
regression
nub . sort/4000(1->536870911) times
lower bound estimate upper bound
OLS regression 68.7 ms 69.8 ms 71.5 ms
R² goodness-of-fit 0.999 1.000 1.000
Mean execution time 68.8 ms 69.1 ms 69.7 ms
Standard deviation 249 μs 537 μs 755 μs

Outlying measurements have moderate (12.2%) effect on estimated standard deviation.

nub . sort/5000(1->536870911)

105
106
107
108
109
110
111
112
113
nub . sort/5000(1->536870911) time densities
mean
2
3
4
5
1 iters
200
300
400
500
600
0 s
100 ms
regression
nub . sort/5000(1->536870911) times
lower bound estimate upper bound
OLS regression 99.9 ms 109 ms 117 ms
R² goodness-of-fit 0.995 0.998 1.000
Mean execution time 107 ms 109 ms 112 ms
Standard deviation 1.38 ms 2.78 ms 3.99 ms

Outlying measurements have moderate (16.0%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.