criterion performance measurements

overview

want to understand this report?

Words l=6-12/levenshteinMax (1)

500
510
520
530
540
550
560
Words l=6-12/levenshteinMax (1) time densities
mean
200
300
400
500
600
700
800
100×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=6-12/levenshteinMax (1) times
lower bound estimate upper bound
OLS regression 512 ns 514 ns 517 ns
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 509 ns 512 ns 515 ns
Standard deviation 9.06 ns 11.1 ns 13.7 ns

Outlying measurements have moderate (28.9%) effect on estimated standard deviation.

Words l=6-12/levenshteinMaxO (1)

450
460
470
480
490
500
510
Words l=6-12/levenshteinMaxO (1) time densities
mean
400
600
800
200×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=6-12/levenshteinMaxO (1) times
lower bound estimate upper bound
OLS regression 457 ns 459 ns 462 ns
R² goodness-of-fit 0.999 1.000 1.000
Mean execution time 461 ns 464 ns 468 ns
Standard deviation 9.01 ns 12.0 ns 17.3 ns

Outlying measurements have moderate (37.1%) effect on estimated standard deviation.

Words l=6-12/levenshteinMax (2)

750
775
800
825
850
875
Words l=6-12/levenshteinMax (2) time densities
mean
200
300
400
500
600
100×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=6-12/levenshteinMax (2) times
lower bound estimate upper bound
OLS regression 772 ns 778 ns 781 ns
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 773 ns 777 ns 782 ns
Standard deviation 11.5 ns 18.5 ns 27.9 ns

Outlying measurements have moderate (32.4%) effect on estimated standard deviation.

Words l=6-12/levenshteinMaxO (2)

720
730
740
750
760
Words l=6-12/levenshteinMaxO (2) time densities
mean
200
300
400
500
600
100×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=6-12/levenshteinMaxO (2) times
lower bound estimate upper bound
OLS regression 721 ns 723 ns 726 ns
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 728 ns 730 ns 733 ns
Standard deviation 10.4 ns 12.0 ns 13.5 ns

Outlying measurements have moderate (18.5%) effect on estimated standard deviation.

Words l=6-12/levenshteinMax (3)

1.26
1.28
1.3
1.32
1.34
Words l=6-12/levenshteinMax (3) time densities
mean
100
150
200
250
300
350
50×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=6-12/levenshteinMax (3) times
lower bound estimate upper bound
OLS regression 1.30 μs 1.31 μs 1.32 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 1.30 μs 1.30 μs 1.31 μs
Standard deviation 23.9 ns 26.8 ns 29.6 ns

Outlying measurements have moderate (25.2%) effect on estimated standard deviation.

Words l=6-12/levenshteinMaxO (3)

1.12
1.14
1.16
1.18
1.20
1.22
1.24
Words l=6-12/levenshteinMaxO (3) time densities
mean
100
150
200
250
300
350
400
50×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=6-12/levenshteinMaxO (3) times
lower bound estimate upper bound
OLS regression 1.13 μs 1.14 μs 1.14 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 1.14 μs 1.14 μs 1.15 μs
Standard deviation 17.7 ns 23.2 ns 31.9 ns

Outlying measurements have moderate (25.3%) effect on estimated standard deviation.

Words l=6-12/levenshteinMax (4)

1.28
1.29
1.3
1.31
1.32
1.33
1.34
1.35
1.36
Words l=6-12/levenshteinMax (4) time densities
mean
100
150
200
250
300
350
50×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=6-12/levenshteinMax (4) times
lower bound estimate upper bound
OLS regression 1.30 μs 1.31 μs 1.31 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 1.30 μs 1.31 μs 1.31 μs
Standard deviation 14.8 ns 17.4 ns 20.3 ns

Outlying measurements have moderate (12.5%) effect on estimated standard deviation.

Words l=6-12/levenshteinMaxO (4)

1.14
1.16
1.18
1.20
1.22
Words l=6-12/levenshteinMaxO (4) time densities
mean
100
150
200
250
300
350
50×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=6-12/levenshteinMaxO (4) times
lower bound estimate upper bound
OLS regression 1.16 μs 1.17 μs 1.18 μs
R² goodness-of-fit 0.999 0.999 1.000
Mean execution time 1.16 μs 1.16 μs 1.17 μs
Standard deviation 15.4 ns 20.3 ns 24.6 ns

Outlying measurements have moderate (19.7%) effect on estimated standard deviation.

Words l=6-12/levenshtein

2.85
2.90
2.95
3.00
3.05
3.10
Words l=6-12/levenshtein time densities
mean
50
75
100
125
150
25×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=6-12/levenshtein times
lower bound estimate upper bound
OLS regression 2.88 μs 2.90 μs 2.92 μs
R² goodness-of-fit 0.999 1.000 1.000
Mean execution time 2.89 μs 2.90 μs 2.92 μs
Standard deviation 36.6 ns 59.2 ns 79.1 ns

Outlying measurements have moderate (23.4%) effect on estimated standard deviation.

Words l=6-18/levenshteinMax (1)

500
510
520
530
540
Words l=6-18/levenshteinMax (1) time densities
mean
200
300
400
500
600
700
800
100×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=6-18/levenshteinMax (1) times
lower bound estimate upper bound
OLS regression 509 ns 513 ns 516 ns
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 509 ns 511 ns 514 ns
Standard deviation 6.85 ns 8.15 ns 10.3 ns

Outlying measurements have moderate (17.9%) effect on estimated standard deviation.

Words l=6-18/levenshteinMaxO (1)

475
500
525
550
575
Words l=6-18/levenshteinMaxO (1) time densities
mean
400
600
800
200×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=6-18/levenshteinMaxO (1) times
lower bound estimate upper bound
OLS regression 468 ns 471 ns 475 ns
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 473 ns 477 ns 486 ns
Standard deviation 11.1 ns 23.1 ns 39.4 ns

Outlying measurements have severe (67.6%) effect on estimated standard deviation.

Words l=6-18/levenshteinMax (2)

770
780
790
800
810
Words l=6-18/levenshteinMax (2) time densities
mean
200
300
400
500
100×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=6-18/levenshteinMax (2) times
lower bound estimate upper bound
OLS regression 784 ns 788 ns 793 ns
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 783 ns 786 ns 789 ns
Standard deviation 9.71 ns 11.4 ns 13.4 ns

Outlying measurements have moderate (14.9%) effect on estimated standard deviation.

Words l=6-18/levenshteinMaxO (2)

710
720
730
740
750
760
770
780
790
Words l=6-18/levenshteinMaxO (2) time densities
mean
200
300
400
500
600
100×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=6-18/levenshteinMaxO (2) times
lower bound estimate upper bound
OLS regression 728 ns 736 ns 742 ns
R² goodness-of-fit 0.999 0.999 1.000
Mean execution time 727 ns 730 ns 735 ns
Standard deviation 8.91 ns 14.1 ns 19.7 ns

Outlying measurements have moderate (23.9%) effect on estimated standard deviation.

Words l=6-18/levenshteinMax (3)

1.03
1.04
1.05
1.06
1.07
1.08
Words l=6-18/levenshteinMax (3) time densities
mean
100
150
200
250
300
350
400
450
50×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=6-18/levenshteinMax (3) times
lower bound estimate upper bound
OLS regression 1.04 μs 1.04 μs 1.05 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 1.04 μs 1.05 μs 1.05 μs
Standard deviation 12.6 ns 14.2 ns 17.8 ns

Outlying measurements have moderate (13.1%) effect on estimated standard deviation.

Words l=6-18/levenshteinMaxO (3)

920
930
940
950
960
970
980
990
1 μs
Words l=6-18/levenshteinMaxO (3) time densities
mean
200
300
400
500
100×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=6-18/levenshteinMaxO (3) times
lower bound estimate upper bound
OLS regression 932 ns 934 ns 938 ns
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 934 ns 937 ns 941 ns
Standard deviation 7.08 ns 11.1 ns 18.1 ns

Outlying measurements have moderate (10.4%) effect on estimated standard deviation.

Words l=6-18/levenshteinMax (4)

1.26
1.28
1.3
1.32
1.34
1.36
Words l=6-18/levenshteinMax (4) time densities
mean
100
150
200
250
300
350
50×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=6-18/levenshteinMax (4) times
lower bound estimate upper bound
OLS regression 1.30 μs 1.31 μs 1.32 μs
R² goodness-of-fit 0.999 1.000 1.000
Mean execution time 1.32 μs 1.32 μs 1.33 μs
Standard deviation 20.0 ns 22.8 ns 28.2 ns

Outlying measurements have moderate (19.0%) effect on estimated standard deviation.

Words l=6-18/levenshteinMaxO (4)

1.42
1.43
1.44
1.45
1.46
Words l=6-18/levenshteinMaxO (4) time densities
mean
100
150
200
250
300
50×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=6-18/levenshteinMaxO (4) times
lower bound estimate upper bound
OLS regression 1.44 μs 1.44 μs 1.44 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 1.44 μs 1.44 μs 1.44 μs
Standard deviation 8.11 ns 9.66 ns 11.5 ns

Outlying measurements have no (0.5%) effect on estimated standard deviation.

Words l=6-18/levenshtein

4.35
4.40
4.45
4.5
4.55
4.6
Words l=6-18/levenshtein time densities
mean
40
60
80
100
20×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=6-18/levenshtein times
lower bound estimate upper bound
OLS regression 4.41 μs 4.42 μs 4.45 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 4.40 μs 4.41 μs 4.42 μs
Standard deviation 35.7 ns 51.0 ns 67.2 ns

Outlying measurements have slight (8.7%) effect on estimated standard deviation.

Words l=12-18/levenshteinMax (1)

920
940
960
980
1 μs
1.02
Words l=12-18/levenshteinMax (1) time densities
mean
200
300
400
500
100×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=12-18/levenshteinMax (1) times
lower bound estimate upper bound
OLS regression 940 ns 943 ns 949 ns
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 943 ns 946 ns 953 ns
Standard deviation 13.1 ns 17.2 ns 25.0 ns

Outlying measurements have moderate (21.4%) effect on estimated standard deviation.

Words l=12-18/levenshteinMaxO (1)

840
850
860
870
880
Words l=12-18/levenshteinMaxO (1) time densities
mean
200
300
400
500
100×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=12-18/levenshteinMaxO (1) times
lower bound estimate upper bound
OLS regression 844 ns 846 ns 849 ns
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 848 ns 851 ns 854 ns
Standard deviation 8.35 ns 9.93 ns 12.6 ns

Outlying measurements have moderate (10.3%) effect on estimated standard deviation.

Words l=12-18/levenshteinMax (2)

1.38
1.40
1.42
1.44
1.46
Words l=12-18/levenshteinMax (2) time densities
mean
100
150
200
250
300
50×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=12-18/levenshteinMax (2) times
lower bound estimate upper bound
OLS regression 1.39 μs 1.40 μs 1.41 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 1.39 μs 1.39 μs 1.40 μs
Standard deviation 11.3 ns 15.2 ns 20.8 ns

Outlying measurements have slight (8.6%) effect on estimated standard deviation.

Words l=12-18/levenshteinMaxO (2)

1.32
1.34
1.36
1.38
1.40
1.42
Words l=12-18/levenshteinMaxO (2) time densities
mean
100
150
200
250
300
50×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=12-18/levenshteinMaxO (2) times
lower bound estimate upper bound
OLS regression 1.35 μs 1.36 μs 1.37 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 1.35 μs 1.35 μs 1.36 μs
Standard deviation 10.8 ns 14.3 ns 19.5 ns

Outlying measurements have slight (8.2%) effect on estimated standard deviation.

Words l=12-18/levenshteinMax (3)

1.90
1.92
1.94
1.96
1.98
Words l=12-18/levenshteinMax (3) time densities
mean
100
150
200
50×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=12-18/levenshteinMax (3) times
lower bound estimate upper bound
OLS regression 1.91 μs 1.92 μs 1.92 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 1.91 μs 1.91 μs 1.92 μs
Standard deviation 11.7 ns 16.0 ns 24.9 ns

Outlying measurements have no (0.5%) effect on estimated standard deviation.

Words l=12-18/levenshteinMaxO (3)

2.22
2.24
2.26
2.28
2.30
2.32
Words l=12-18/levenshteinMaxO (3) time densities
mean
100
150
200
50×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=12-18/levenshteinMaxO (3) times
lower bound estimate upper bound
OLS regression 2.24 μs 2.26 μs 2.27 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 2.25 μs 2.25 μs 2.26 μs
Standard deviation 18.1 ns 23.7 ns 31.3 ns

Outlying measurements have slight (7.7%) effect on estimated standard deviation.

Words l=12-18/levenshteinMax (4)

2.40
2.50
2.60
2.7
2.80
2.90
3.00
Words l=12-18/levenshteinMax (4) time densities
mean
50
75
100
125
150
175
25×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=12-18/levenshteinMax (4) times
lower bound estimate upper bound
OLS regression 2.44 μs 2.46 μs 2.48 μs
R² goodness-of-fit 0.998 0.999 1.000
Mean execution time 2.44 μs 2.46 μs 2.49 μs
Standard deviation 50.8 ns 93.9 ns 174 ns

Outlying measurements have severe (52.6%) effect on estimated standard deviation.

Words l=12-18/levenshteinMaxO (4)

2.15
2.2
2.25
2.30
2.35
2.40
2.45
2.5
Words l=12-18/levenshteinMaxO (4) time densities
mean
100
150
200
50×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=12-18/levenshteinMaxO (4) times
lower bound estimate upper bound
OLS regression 2.24 μs 2.25 μs 2.27 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 2.21 μs 2.23 μs 2.25 μs
Standard deviation 32.9 ns 58.4 ns 82.6 ns

Outlying measurements have moderate (34.5%) effect on estimated standard deviation.

Words l=12-18/levenshteinMax (5)

2.85
2.90
2.95
3.00
3.05
3.10
3.15
3.2
Words l=12-18/levenshteinMax (5) time densities
mean
50
75
100
125
150
25×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=12-18/levenshteinMax (5) times
lower bound estimate upper bound
OLS regression 2.90 μs 2.92 μs 2.94 μs
R² goodness-of-fit 0.999 1.000 1.000
Mean execution time 2.92 μs 2.94 μs 2.95 μs
Standard deviation 44.5 ns 62.9 ns 93.6 ns

Outlying measurements have moderate (25.4%) effect on estimated standard deviation.

Words l=12-18/levenshteinMaxO (5)

3
2.65
2.7
2.75
2.80
2.85
2.90
2.95
3.05
Words l=12-18/levenshteinMaxO (5) time densities
mean
50
75
100
125
150
25×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=12-18/levenshteinMaxO (5) times
lower bound estimate upper bound
OLS regression 2.72 μs 2.75 μs 2.77 μs
R² goodness-of-fit 0.999 0.999 1.000
Mean execution time 2.74 μs 2.76 μs 2.80 μs
Standard deviation 68.5 ns 85.9 ns 113 ns

Outlying measurements have moderate (41.9%) effect on estimated standard deviation.

Words l=12-18/levenshteinMax (6)

4
3.80
3.90
4.10
4.2
4.30
4.4
Words l=12-18/levenshteinMax (6) time densities
mean
40
60
80
100
20×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=12-18/levenshteinMax (6) times
lower bound estimate upper bound
OLS regression 3.89 μs 3.91 μs 3.93 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 3.92 μs 3.94 μs 3.96 μs
Standard deviation 67.9 ns 98.3 ns 140 ns

Outlying measurements have moderate (31.1%) effect on estimated standard deviation.

Words l=12-18/levenshteinMaxO (6)

4.2
4.30
4.4
4.50
4.60
4.70
Words l=12-18/levenshteinMaxO (6) time densities
mean
40
60
80
100
20×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=12-18/levenshteinMaxO (6) times
lower bound estimate upper bound
OLS regression 4.31 μs 4.35 μs 4.40 μs
R² goodness-of-fit 0.999 0.999 1.000
Mean execution time 4.31 μs 4.33 μs 4.36 μs
Standard deviation 61.5 ns 85.7 ns 121 ns

Outlying measurements have moderate (22.0%) effect on estimated standard deviation.

Words l=12-18/levenshteinMax (7)

4
3.80
4.2
4.4
4.6
4.80
Words l=12-18/levenshteinMax (7) time densities
mean
40
60
80
100
20×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=12-18/levenshteinMax (7) times
lower bound estimate upper bound
OLS regression 3.94 μs 3.96 μs 3.98 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 3.94 μs 3.96 μs 4.02 μs
Standard deviation 66.0 ns 146 ns 250 ns

Outlying measurements have moderate (49.7%) effect on estimated standard deviation.

Words l=12-18/levenshteinMaxO (7)

5
4.6
4.7
4.8
4.9
5.1
Words l=12-18/levenshteinMaxO (7) time densities
mean
40
60
80
100
20×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=12-18/levenshteinMaxO (7) times
lower bound estimate upper bound
OLS regression 4.67 μs 4.70 μs 4.73 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 4.69 μs 4.71 μs 4.75 μs
Standard deviation 57.5 ns 83.0 ns 124 ns

Outlying measurements have moderate (18.1%) effect on estimated standard deviation.

Words l=12-18/levenshteinMax (8)

5.7
5.80
5.9
6.00
6.10
6.20
6.30
6.4
Words l=12-18/levenshteinMax (8) time densities
mean
20
30
40
50
60
70
10×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=12-18/levenshteinMax (8) times
lower bound estimate upper bound
OLS regression 5.78 μs 5.80 μs 5.85 μs
R² goodness-of-fit 0.999 1.000 1.000
Mean execution time 5.86 μs 5.89 μs 5.94 μs
Standard deviation 129 ns 159 ns 203 ns

Outlying measurements have moderate (33.5%) effect on estimated standard deviation.

Words l=12-18/levenshteinMaxO (8)

4.65
4.7
4.75
4.80
4.85
4.9
Words l=12-18/levenshteinMaxO (8) time densities
mean
40
60
80
100
20×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=12-18/levenshteinMaxO (8) times
lower bound estimate upper bound
OLS regression 4.73 μs 4.76 μs 4.79 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 4.71 μs 4.72 μs 4.74 μs
Standard deviation 44.5 ns 52.7 ns 67.8 ns

Outlying measurements have slight (8.3%) effect on estimated standard deviation.

Words l=12-18/levenshtein

9
8.6
8.8
9.20
9.4
Words l=12-18/levenshtein time densities
mean
20
30
40
50
10×10³ iters
200
300
400
500
0 s
100 ms
regression
Words l=12-18/levenshtein times
lower bound estimate upper bound
OLS regression 8.60 μs 8.63 μs 8.67 μs
R² goodness-of-fit 1.000 1.000 1.000
Mean execution time 8.64 μs 8.66 μs 8.72 μs
Standard deviation 66.1 ns 149 ns 224 ns

Outlying measurements have moderate (16.3%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.